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Plotting non-Linear Functions 

Discovering Constants 

In the pipe and bucket studies above, we were lucky to have functions that took the shape of a 

straight line. But what if we were studying the leak rate from a water tank, instead of from a 

pipe? 

 

The leak rate from a vessel, for example a pipe, a tank, or even an artery or vein, depends on 

the pressure in that vessel, and the size and shape of the hole the leak is coming out of. In our 

pipe examples, we were assuming the hole in the pipe didn’t change, and the pressure in the 

pipe didn’t change. 

In an open vessel like a tank, the pressure in the vessel depends on the depth where you are 

measuring it – the more meters of water (or any fluid) there are above the measurement point, 

the higher the pressure will be at the measurement point (which is why you may feel pressure 

in your ears if you swim to the bottom of a swimming pool). How will this affect flow rate? 

The mathematical formula that relates flow rate to depth in an open vessel is called Torricelli’s 

Law. It is 𝑣 = 𝜙√2𝑔ℎ, where 𝑣 is flow rate, φ is a constant that represents three other 



constants (describing the density of the liquid, and the size and shape of the hole), g is gravity, 

and h is the depth (or, rather, the height) of the liquid above the measurement point. (The law 

is named after Evangelista Torricelli, an Italian physicist and mathematician who lived in the 

17th Century. Torricelli invented the barometer).  

The plot of the function that represents Torricelli’s law would take the shape of a square root 

function, where v is the y-axis, and h is the x-axis. The plot would be scaled by g (gravity) and φ, 

but we don’t know what φ is. 

 

Figuring out φ by examining the hole the leak is coming out of, and by measuring the density of 

the fluid, would be very hard. But since the value of φ doesn’t vary as the depth varies, even 

though the flow rate does, it isn’t necessary to examine the hole, or to measure the density of 

the fluid – all an engineer has to do is to measure the flow rate out of the hole at one point in 

time, and the height of the water above the hole at that same point in time. The engineer can 

then put those numbers into the equation of Torricelli’s Law to figure out a rough value for φ. 

(Of course, if the engineer wanted to be more accurate, they would measure several different 

pairs of flow rate and height, at several different times, as the level of the water goes down, 

and average their resulting values for φ). Once the engineer has figured out φ, the engineer can 

predict what the flow rate will be at any depth. From this range of flow rates (and, as long as 

the water in the tank doesn’t freeze), the engineer can figure out (using Calculus) what the 

volume of the leak will be at any point in time. 
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Torricelli’s law is hard to solve, but easy to demonstrate. All you need is an 

empty plastic water bottle and some water.  

In this experiment we will use several holes at different heights, instead of just 

one hole as the water level drops in the vessel. But, you should still pay 

attention to how the flow rate from the bottom hole changes as the water level 

drops.  

1 - Get an empty water bottle, and some water. You’ll also want something to 

catch the water as it comes out of the bottle. 

2 - Punch three small holes in the bottle, one at the very bottom, one near the 

middle, and one right below the neck. Try to make the holes as close to the 

same size and shape as possible. 

3 - Have someone else block the holes with their fingers, and then fill up the 

bottle.  

4 – Holding the bottle straight upright, unblock the holes.  

What does the flow rate from the holes tell you about pressure in the bottle? 

 

 

Exponents and Logarithms  

As we’ve seen, not all things in the world work in straight lines. To model different kinds of 

systems, scientists have to use different kinds of equations, with different kinds of plots and 

charts. In the remainder of this section, we’ll talk about some of those different kinds of 

equations.  

One common function that appears in scientific research is called “exponential.” Let’s look back 

at the cholera epidemic in London. Epidemics are caused by microbes (that is, “germs”). During 
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the Broad Street epidemic, microbes from one baby’s diapers killed 500 people. How is this 

possible? 

Cholera is caused by a specific kind of microbe, namely a strain of bacteria called “Vibrio 

Cholerae.” Like most bacteria, Vibrio Cholerae reproduces by dividing itself in half.  

 

When one bacterium splits, the two halves grow to be the same size as the original, and then 

those two halves also split (once the two halves have grown to be the same size as the original 

bacterium they are able to reproduce, because they are now adult bacteria). The time between 

the first split and the second is called a “reproduction cycle.” 

No matter how many bacteria you start with, if the bacteria reproduce by dividing in half the 

number of bacteria will double with every reproduction cycle. Each individual bacterium in a 

sample of bacteria won’t divide at exactly the same time, but if you count the number of 

bacteria once every reproduction cycle, you can expect your value to always be about two 

times the previous value. Different strains and types of bacteria reproduce at different speeds, 

so the actual length in time of a reproduction cycle is different depending on the strain and 

type.  

For simplicity, let’s use “reproduction cycle” as our unit of time, instead of a specific number of 

minutes or hours. Let’s call the time it takes a bacterium to reproduce, that is, the time it takes 

for it to go through a full reproduction cycle, “tr”. If at t=0 there is one bacterium, at 1*tr there 

will be two bacteria. At 2* tr there will be four bacteria. At 3* tr there will be eight bacteria, and 

so on.  
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time (in tr)  0 1 2 3 4 5 6 7 8 9 10 11 

number of 

bacteria 

1 2 4 8 16 32 64 128 256 1024 2048 4096 

 

If we were to draw a graph of “number of Vibrio Cholerae” versus “time,” that graph would 

have an upward slope, like the slope in the flow rates studies. Unlike the flow rate studies, 

however, the graph would look like y=2x, or, rather, bacteria=2time. The variable “time”, which is 

our independent variable, appears as an exponent in this equation. 

 

While the base in the above graph is 2, the general equation for an exponential is y = bx (or 

y=bx+ c, where “c” is a constant). The base, b, in an exponential function can be any positive 

number. If bacteria reproduced by splitting into thirds, for example, the graph above would 

look like y=3x, if bacteria reproduced by splitting into fourths, it would look like y=4x, and so on. 

In all of these cases, however, the value of y, that is, the number of bacteria we are 

representing (or anything else being counted) would grow very fast.  

For some kinds of graphing, y values grow so fast that they cannot be reasonably represented 

on an x-y plot. Below is a table of y=10x as x goes from 0 to 8. If a piece of graph paper holds 60 
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squares in the vertical direction, how many pieces of paper would it take to draw this graph as x 

goes from zero to 10?  

x 0 1 2 3 4 5 6 7 8 

10x 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,

000 

 

How can we possibly plot these huge numbers? We can plot them using logarithms.  
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